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Abstract— Systolic architectures work like stream architectures and can be exploited to accelerate data and compute bound applications. 
Such applications are represented as multi-level nested loop algorithms. In other words, nested loop algorithms can be speeded up by 
exploiting the inherent parallelism, and by mapping the computational tasks of the algorithm using a suitable mapping methodology on to 
array architecture. In this paper the mapping methodology that identifies a lower dimensional sub-space in the n-D problem space wherein 
lies the axis of up-dating of the computational equation is validated by implementing the allocation algorithm in C programming as applied 
to higher dimensional - n-D nested loop algorithms where n is greater than 2. The algorithms under consideration here are the 3-D matrix-
matrix multiplication, 2-D spatial filtering algorithm which is a 4-D nested loop algorithm and 6-D FSBM.  The input to the allocation 
algorithm is the dependence graph (DG) representation of the considered n-D nested loop problem. Effectiveness and validity of the 
mapping methodology for the allocation of the processing element (PE) array to the  computational sub-space is obtained by comparing the 
number of PEs, ports, data reuse registers and memory read with an allocation to a  random sub-space of the n-D problem space.  It is 
found that the allocation of the computational sub-space of the n-D problem space (that lie in the identified computational sub-space) to the 
PE array of the systolic array architecture results   in the optimal allocation as shown by the output of our allocation algorithm. 

Index Terms— Design space exploration, Dependence graph, Computational subspace, Random subspace, Systolic array, Processing 
elements, Spatial filtering, Full search block motion estimation 

——————————      ———————— —— 

1 INTRODUCTION                                                                     
llocation of the tasks of the computationally intensive 
algorithms represented by n-D algorithms to the pro-
cessing elements of a parallel architecture is known as 

mapping. The various possible design solutions and tradeoffs 
for the problem under consideration is termed as the design 
space. The design space consists of many possible design solu-
tions for the system and it becomes tough to determine the 
good designs. A good synthesis system has large design space 
which allows us to explore different tradeoffs between area, 
power, cost etc, for different designs which are to be explored 
and optimized. During the design space exploration (DSE) a 
conflicting situation always exists for the designer to concur-
rently maximize the accuracy of the process and minimize the 
time spent during DSE [3]. An automated synthesis can keep 
track of the design decisions made and their effects related to 
multi-parametric optimization has been carried out  reduce 
conflicting situations. So automating the synthesis at higher 
levels of hierarchy has become important [1].  

   Different tasks and the priority of computations in the algo-
rithm are represented by data flow graphs and dependence 
graphs. These representations allow the designer in the high 
level synthesis flow to represent the tasks in the algorithm and 
identify the parallel nodes of the algorithms that can be 
mapped to parallel architectures or folded pipelined architec-
tures with an aim of arriving at optimal semi-parallel architec-
tures [4], [8]. Systolic array is a scalable architecture which can 
be extended to any number of processors [11], [12]. The VLSI 
technology offers immense opportunities to develop parallel 
computations for both special purpose and general purpose 
devices. Its principles are compatible with VLSI technology 
characteristics, since systolic arrays are highly regular. Only 
algorithms with repetitive computations perform well and 
nested loop algorithms can be efficiently implemented by sys-

tolic array architecture. 

   In this paper the mapping of n-D nested loop problems onto 
systolic array representation is aimed at with the aid of map-
ping methodology which identify lower dimension sub-space 
of higher dimension problem using the computational sub-
space [6] and followed by this, the results of the said method is 
compared with an allocation to a random sub-space of the n-D 
problem space [7]. The main objective here is to explore the 
design space exploration by  mapping and allocation  along 
various sub-spaces of the n-D problem for selecting proper 
design of the systolic array architecture with an objective of 
arriving at an optimal   number of ports, data reuse, number of 
PEs. The possible designs are arrived at by exploring the vari-
ous ways of allocation namely the computational sub-space 
and an allocation to a random sub-space of the n-D problem 
space. Application algorithms selected are matrix-matrix mul-
tiplication, and 2-D spatial filtering and 6-D FSBM which are 
higher dimension algorithms. There by effectiveness and va-
lidity of the computational sub-space method is obtained for 
higher dimensional algorithms.  

This paper is organized as follows. Section 2 gives a brief 
overview on literature survey. Section 3 highlights methodolo-
gies to map nodes in dependency graph representation of 
nested loop algorithm to regular systolic array architecture. 
Section 4 describes the implementation details and results. 
Section 5 concludes the paper and scope of future work. 

2 LITERATURE REVIEW 
The techniques of high level synthesis (HLS) are to be required 
to be used to design an efficient exploration approach with the 
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ability to determine optimal/near-optimal scheduling solu-
tions and module selection with significant speed and preci-
sion. The role of high level synthesis has become very im-
portant in the design of application specific processors (ASPs) 
and application specific integrated circuits (ASICs) [2]. There 
are many conflicting situations at the time of design space ex-
ploration. An efficient designer should maximize the accuracy 
of design space exploration and minimize the time spent for 
analysis and selecting best design for implementation. Many 
techniques are introduced which are capable of drastically 
reducing the number of variants to be analyzed for proper 
selection of the optimal design in the minimal time period. i.e., 
from the given specifications and system requirements the 
designer has to reduce complex design space into several fea-
sible design solutions which satisfy required multi objectives. 
Multi-objective optimization is multiple criteria decision mak-
ing, which is concerned with mathematical optimization prob-
lems involving more than one objective function to be opti-
mized simultaneously [3]. 
   A priority factor method for selecting best design during 
design space exploration to select the resources for final organ-
ization of the design without requiring any graphs or tree ar-
rangements to analyze the candidate variants [1]. Also a de-
sign methodology using an efficient multi-objective (area oc-
cupied, execution time and power consumption) exploration 
approach with the architecture synthesis process, that uses 
min-max analysis for selecting the optimal design during DSE 
is used [2]. 

3 METHODOLOGY 
An appropriate representation of multi level nested loop algo-
rithms will be essential for building design space exploration 
methods to arrive at array architectures and to determine the 
data-path of the arrays after successful mapping and alloca-
tion. One of them is the representation of the algorithm by 
using regular dependence graph (DG) and the mapping is 
done using linear mapping techniques. The edges in the de-
pendence graph represent the precedence constraints. The DG 
corresponds to space representation where no time instant is 
assigned to any computation. Each node in DG represents it-
eration in nested loop. All the nodes collectively form iteration 
space. The interdependencies among the inherited and syn-
thesized attributes at the nodes in a dataflow graph can be 
depicted by a dependence graph. The determination of the 
allocation and scheduling for HLS is very important to opti-
mize the parameter of the design which are identified as fol-
lows for our design. 
1.  Number of PEs: Processing element is the basic building 
block of a systolic array. So reducing number of PEs lead to 
reduced area of architecture. Each processing element per-
forms a sequence of operations on data that flows between 
them. 
2. Number of ports: The data streams are entering and leaving 
through the ports of the array. Reducing the number of ports 
also helps to reduce the area of the designed systolic array. 
3. Data reuse: Data reuse indicates the number of times that 
the data entered through every port is reused. 
4. Memory read: Total number of reads through the external 

ports. 
5. Number of cycles: Number of cycles required to perform an 
algorithm is analogous to speed of execution. So number of 
cycles should be reduced for faster execution. 

3.1 Mapping Methodologies for n-D Nested Loop 
Algorithms 
 
Computational Sub-Space Mapping Methodology 
The window or sub-space for the allocation is most appropri-
ately chosen so that there is more advantage for implementa-
tion in terms of data reuse, amount of memory reads and 
number of ports. In this methodology window assignment lies 
along the computational equation [6], [7] as shown in Fig. 1. 
 
Random Sub-Space Method 
As opposed to the above allocation, when the  tasks in the DG 
are assigned to the PE array in a random manner not taking 
into consideration the updating direction of the computational  
expression as shown in Fig.2. 

Ports
Data reuse

PE array allocation

PE array allocation

  

 
Fig. 1: Computational sub-space mapping methodology 

3.2 Matrix-Matrix Multiplication (MMM) 

Multiply 2 matrices A and B of order )( nm×  and )( qp× , 

and resulting C matrix of order )( qm×  [9] and [10]. In the 
computational sub-space mapping methodology every data 
element in the first matrix is reused )1( −q times. Similarly 
every element of thesecond matrix is reused (m-1) times. So 
total reuse = )1)(()1)(( −×+−× mqpqnm .Number of PEs 
is )( qm×  and ports is reduced to )( nm + . The number of 
memory read is = )()( qpnm ×+× . In random i-k sub-space 
mapping methodology reuse is limited to )1)(( −× qnm and 
in random j-k sub-space mapping methodology reuse 
is )1)(( −× mqp  
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Ports
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Fig. 2: Random i-k sub-space mapping methodology 

3.3 2D Spatial Filtering (2-D SF) 
To explain the 2-D spatial filtering convolution with 3 x 3 so-
bel mask and image frame is considered. The sobel operator 
performs a 2-D spatial gradient measurement on an image so 
as to emphasize regions of high spatial frequency that corre-
spond to edges. The new image is formed by convolution of 
sobel mask with the zero padded images. The sobel mask is 
moved over the image and the convolution sum is computed. 
The computation of convolution sum is implemented by allo-
cation of the corresponding sub-space to the PE array and 
compared with an allocation of PE array to an arbitrary sub-
space termed as the random sub-space method and the result 
is discussed in the section 4. 

3.4 6-D Full Search Block Motion (FSBM) Estimation 
Algorithm  

To explain the 6 level FSBM algorithms, consider two consecu-
tive frames of a video, the current frame and the previously 
processed frame. A current frame is subdivided in to number 
of macro blocks. A typical video frame consist of v ×  h blocks, 
where v is the number of block in each row and h is the num-
ber of blocks in each column. Each block of a current frame, 
i.e., sub-frame is usually taken as a N ×  N pixel matrix, and 
this is labeled as i ×  j pixels. The pixels in the directions of 
search are labeled as m ×  n pixels. The identified sub-space 
for each pixel is m ×  n sub-space, which is allocated to the 
PEs. In higher dimensional algorithms such as 6-D FSBM the 
computational sub-space is more than one as shown in the 
results and the comparison between the two identifies the op-
timal allocation [6] 

 
Method I: Computation Equation along m, n Direction   
In this method the current frame is compared with reference 
frame in (2×p+ 1) directions, where p ≤ N/2; where N is the 
block size, here N = 3. Hence the comparison is done in 9 di-
rections when p = 1. There are various functions to determine 

the direction of motion in the successive video frames, of 
which the most popular and less computationally expensive is 
Mean absolute difference (MAD). The MAD function for m, n 
direction is given by: 
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Where, y is the previously processed frame and c is the current 
frame. 

Method II: Computation Equation along i, j Direction  

In this method the 3 x 3 sub-frame of the current frame is 
compared with reference frame along each direction separate-
ly. This comparison can be done by 9 PEs for one direction and 
similarly for remaining 9 directions. The MAD function for i, j 
direction is given by 
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Reuse of data is greater in m-n direction comparing to i-j since 
every element in a block are reused. 

4 RESULTS 
Dependency graph representation of matrix-matrix multiplica-
tion, 2-D-spatial filtering and 6D FSBM  in C is input to the 
allocation algorithm for different mapping methodologies 
namely  computational sub-space and random sub-space  and 
the outputs obtained are the  number of PEs allocated to form 
the systolic array, number of ports, data reuse of registers, 
memory read and number of cycles.  

4.1 Matrix Matrix Multiplication (MMM) 
Table 1 gives the result of computational sub-space method for 
MMM problem. Table 2 gives the result of random i-k sub-
space method and Table 3 gives the result of random j-k sub-
space method. 

 
Graphical Analysis (MMM) 
Fig. 3, 4, 5 gives the comparison of data reuse, number of PEs, 
number of ports respectively. From the graphs it is found that 
in the computation sub-space mapping methodology data is 
efficiently reused, and also it is seen that the number of ports 
allocated for the former method is less than that for the latter 
method as shown in Fig.5 for a constant matrix size. In the 
case of number of PEs and cycles, a generalized conclusion 
can’t be evolved since number of PEs and cycles purely de-
pends on sub-space size which is a function of matrix dimen-
sion 
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Table 1: Result of computational sub-space method (matrix multiplication order [m×n] with [p×q]) 

Parameter [2 × 2] 

× 

[2 ×2] 

[2 × 3] 

× 

[3 × 2] 

[3 × 3] 

× 

[3 × 3] 

[4 × 4] 

× 

[4× 4] 

[4 × 3] 

× 

[3 × 5] 

[5 × 5] 

× 

[5 × 5] 

[6× 6] 

× 

[6× 6] 

[6 ×7] 

× 

[7 × 6] 

Data reuse 8 12 36 96 93 200 360 420 

Memory read 8 12 18 32 27 50 72 84 

Number of PEs 4 4 9 16 20 25 36 36 

Ports 4 4 6 8 9 10 12 12 

Cycle 2 3 3 4 3 5 6 7 

 
 

Table 2: Result of random i-k sub-space method (matrix multiplication of order [m×n] with [p×q])

Parameter [2 × 2] 

× 

[2 ×2] 

[2 × 3] 

× 

[3 × 2] 

[3 × 3] 

× 

[3 × 3] 

[4 × 4] 

× 

[4× 4] 

[4 × 3] 

× 

[3 × 5] 

[5 × 5] 

× 

[5 × 5] 

[6× 6] 

× 

[6× 6] 

[6 ×7] 

× 

[7 × 6] 

Data reuse 4 6 18 48 48 100 180 210 

Memory read 8 12 18 32 27 50 72 84 

Number of PEs 4 6 9 16 15 25 36 42 

Ports 6 9 12 20 18 30 42 49 

Cycle 2 2 3 4 4 5 6 6 
 

Table 3: Result of random j-k sub-space method (matrix multiplication of order [m×n] with [p×q]) 

Parameter [2 × 2] 

× 

[2 ×2] 

[2 × 3] 

× 

[3 × 2] 

[3 × 3] 

× 

[3 × 3] 

[4 × 4] 

× 

[4× 4] 

[4 × 3] 

× 

[3 × 5] 

[5 × 5] 

× 

[5 × 5] 

[6× 6] 

× 

[6× 6] 

[6 ×7] 

× 

[7 × 6] 

Data reuse 4 6 18 48 45 100 180 210 

Memory read 8 12 18 32 27 50 72 84 

Number of PEs 4 6 9 16 12 25 36 42 

Ports 6 9 12 20 15 30 42 49 

Cycle 2 2 3 4 5 5 6 6 
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Fig. 3: Data reuse (x axis: Matrix dimension   y axis: Reuse 

of registers) 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4: Number of PEs (x axis: Matrix dimension   y axis: 

Number of PEs) 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5: Number of ports (x axis: Matrix dimension   y axis: 

Number of ports) 
 

So from the graphical analysis it can be observed that compu-
tational sub-space mapping methodology is better than ran-
dom sub-space methodology in terms of data reuse, memory 
read and number of ports. 

4.2 2-D Spatial Filtering (2-D SF) 
 
Table 4 and 5 represents the result of computation sub-space 
method and random sub-space method for 2-D spatial filter-
ing. 

 

Table 4: Result of computational sub-space (2-D SF) 

 
 
 

 
 
 
 
 
 
 
 
 
 

 
Table 5: Result of random sub-space (2-D SF) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Graphical Analysis (2-D SF) 
In the case of spatial filtering also it is found that computa-
tional sub-space mapping methodology allows the maximum 
data reuse lesser access through ports as shown by reduction 
in the   memory read. Fig. 6 shows the graphical analysis of 
data reuse in 2-D spatial filtering for computational and ran-
dom sub-space. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6: Data reuse and memory read (x axis: Matrix dimen-

sion   y axis: Number of cycles)   
 
 

Image 
size 

Data 
reuse 

Memory 
reads 

Cycles 

 

PEs 

 

Ports 

 4×4 60 49 16 9 6 

5×5 104 62 25 9 6 

6×6 160 105 36 9 6 

7×7 228 124 49 9 6 

8×8 308 185 64 9 6 

9×9 400 210 81 9 6 

Image 
size 

Data 
reuse 

Memory 
reads Cycles PEs Ports 

4×4 20 89 16 9 6 

5×5 39 115 25 9 6 

6×6 64 201 36 9 6 

7×7 95 239 49 9 6 

8×8 132 361 64 9 6 

9×9 175 411 81 9 6 IJSER
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4.3 6-D FSBM 
Table 6 shows the result of 6-D FSBM 

 

Table 6: Result of FSBM 

Parameter  i-j direction  m-n direction  

Data reuse 252 648 

Memory read  406 810 

Number of PEs 9 9 

Ports  18 18 

cycles 81 81 
 

Graphical Analysis (6-D FSBM) 

 

Fig. 7: FSBM Graphical analysis (x axis: different parameters   
y axis: values of parameters)      

Fig. 7 represents the graphical analysis of different parame-
ters. Among the two computational directions i-j direction is 
more appropriate in terms of optimal data reuse and optimal 
memory read. This is happening because in the m-n direction 
reuse is mainly for current frame pixels not for previously 
processed frame. So memory read will be very high because 
we have to enter all the surrounding pixels in the search frame 
for every current frame pixel. 

5 CONCLUSION 
Nested loop algorithms can be speeded up by exploiting the in-
herent parallelism, and mapping the computational tasks of the 
algorithm using a suitable mapping methodology on to array 
architecture called systolic array. In this project a mapping meth-
odology that identifies a lower dimension sub-space of a higher 
dimensional problem is implemented using the technique of allo-
cation. The lower dimensional sub-space is chosen to lie along the 
computational equation. The effectiveness and validity of the 
computational sub-space method is obtained by comparing the 
number of PEs, ports, data reuse registers and  memory read with 
a random sub-space method for higher n-D algorithms. The 
graphs shows that the computational sub-space method is found 

to be better than the random sub-space method in terms of the 
amount of data reuse, memory read, number PEs, number of 
ports since they are important parameters for computationally 
intensive algorithms. The data reuse registers are found to be 
more in the former showing the advantage of less external 
memory access. For higher dimension algorithms there may be 
more than one computational direction. So according to the prob-
lem one should have to decide the best solution from the compu-
tational design space. 
The future work is that a more generalized for different sizes of 
sub-frames in the FSBM algorithm and to study the PEs allocated 
and cycle time. Also a HLS synthesis could result in the RTL gen-
eration to obtain the exact data-path architecture. Also a recon-
figurable systolic array architecture could  be evolved using 
graph merging and multi-objective function, wherein the PE ar-
ray configuration can be tailored towards different application 
domains. An array of customizable PEs that can be reconfigured 
for   enabling the mapping of data-paths of both dependent and 
independent computational tasks in the n-D problem space could 
be obtained. 

REFERENCES 
[1] Sengupta, Anirban, Reza Sedaghat, and ZhipengZeng. "A high level synthesis 

design flow with a novel approach for efficient design space exploration in 
case of multi-parametric optimization objective." Microelectronics Reliability 
50, no. 3 (2010): 424-437. 

[2] Sengupta, Anirban, Reza Sedaghat, and ZhipengZeng. "Multi-objective effi-
cient design space exploration and architectural synthesis of an application 
specific processor (ASP)."Microprocessors and Microsystems 35, no. 4 (2011): 
392-404. 

[3] Sengupta, Anirban, Reza Sedaghat, and PallabiSarkar."Rapid exploration of 
integrated scheduling and module selection in high level synthesis for appli-
cation specific processor design." Microprocessors and Microsystems 36, no. 4 
(2012): 303-314.  

[4] Sharma, Hrishikesh, and SachinPatkar."A design methodology for optimally 
folded, pipelined architectures in VLSI applications using projective space lat-
tices."Microprocessors and Microsystems 37, no. 6 (2013): 674-683. 

[5] Andriamisaina, Caaliph, Philippe Coussy, Emmanuel Casseau, and Cyril-
leChavet. "High-level synthesis for designing multimode architec-
tures."Computer-Aided Design of Integrated Circuits and Systems, IEEE 
Transactions on 29, no. 11 (2010): 1736-1749. 

[6] B. Bala Tripura Sundari, T.R. Padmanabhan, "A direct method for optimal 
VLSI realization of deeply nested n-D loop problems",Journal of Microproces-
sors and Microsystems,Embedded Hardware Design, Affiliated with Eu-
romicro, Copyright ©  Elsevier  B.V;  DOI: 10.1016/ j.micpro.2013.04.003. Vol-
ume 37, Issues 6–7, pp.610-628, 2013.    

[7]  Sundari, B. Bala Tripura, and Varsha Krishnan. "Comparison of Configura-
tions of Data Path Architecture Developed Using Template." In Proceedings 
of International Conference on Advances in Computing, pp. 539-548.Springer 
India, 2012. 

[8] Jóźwiak, Lech, and Yahya Jan. "Design of massively parallel hardware multi-
processors for highly-demanding embedded applications."Microprocessors 
and Microsystems 37, no. 8 (2013): 1155-1172. 

[9] Alias, Christophe, BogdanPasca, and AlexandruPlesco. "FPGA-specific syn-
thesis of loop-nests with pipelined computational cores." Microprocessors and 
Microsystems 36, no. 8 (2012): 606-619. 

[10]  Kittitornkun, Surin, and Yu Hen Hu. "Mapping deep nested do-loop DSP 
algorithms to large scale FPGA array structures." Very Large Scale Integration 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014                                                                                                      149 
ISSN 2229-5518   

IJSER © 2014 
http://www.ijser.org  

(VLSI) Systems, IEEE Transactions on 11, no. 2 (2003): 208-217. 
[11] Kung, Sun Yuan. "VLSI array processors."Englewood Cliffs, NJ, Prentice Hall, 

1988, 685 p. Research supported by the Semiconductor Research Corp., SDIO, 
NSF, and US Navy.1 (1988). 

[12]   Parhi,K.K.“VLSI  Digital  Signal  Processing  Systems:  Design  and Imple-
mentation”, John Wiley & Sons, 1999 J.S. Bridle, “Probabilistic Interpretation 
of Feedforward Classification Network Outputs, with Relationships to Statis-
tical Pattern Recognition,” Neurocomputing—Algorithms, Architectures and Ap-
plications, F. Fogelman-Soulie and J. Herault, eds., NATO ASI Series F68, Ber-
lin: Springer-Verlag, pp. 227-236, 1989. (Book style with paper title and editor) 

 

 

IJSER

http://www.ijser.org/

	1 Introduction
	2 LITERATURE REVIEW
	3 METHODOLOGY
	3.1 Mapping Methodologies for n-D Nested Loop Algorithms
	3.2 Matrix-Matrix Multiplication (MMM)
	3.3 2D Spatial Filtering (2-D SF)
	3.4 6-D Full Search Block Motion (FSBM) Estimation Algorithm

	4 RESULTS
	4.1 Matrix Matrix Multiplication (MMM)
	4.2 2-D Spatial Filtering (2-D SF)
	4.3 6-D FSBM

	5 Conclusion
	References



